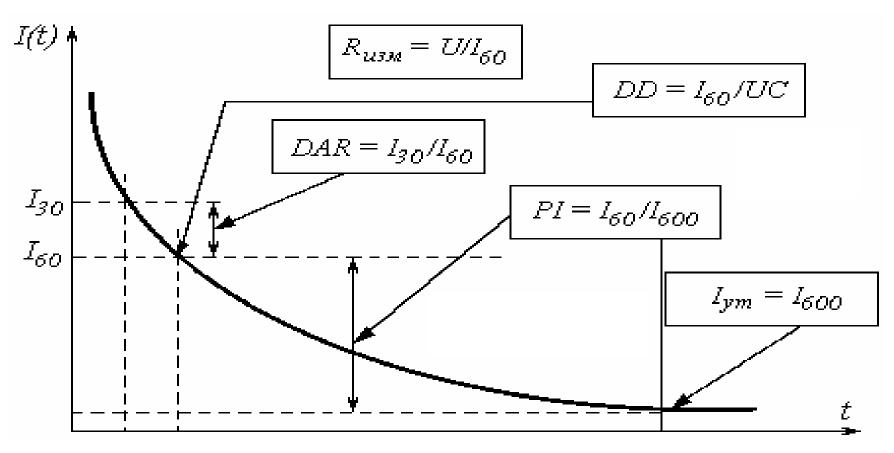
ИДЕОЛОГИЯ МНОГОПАРМЕТРИЧЕСКОЙ СИСТЕМЫ ОЦЕНКИ ИЗОЛЯЦИОНОЙ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ МАШИН, ОСНОВАННОЙ НА АБСОРБЦИОННЫХ МЕТОДАХ КОНТРОЛЯ

М.А. Кисляков^{1*}, В.А. Чернов¹, В.Л. Максимкин¹, Ю.М. Божин¹

¹ Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «Московский энергетический институт» в г. Смоленске, Энергетический проезд, д.1, Смоленск, Россия

Постановка задачи и методы решения


В целях повышения надежности работы современных электрических машин требуется применение современных методов контроля состояния и прогнозирования ресурса.

В 50 % случаев отказ работоспособности электрических машин связывают с повреждением изоляции.

Перспективными считаются неразрушающие методы, в основе которых лежит исследование процессов поляризации, протекающих в изоляционных материалах.

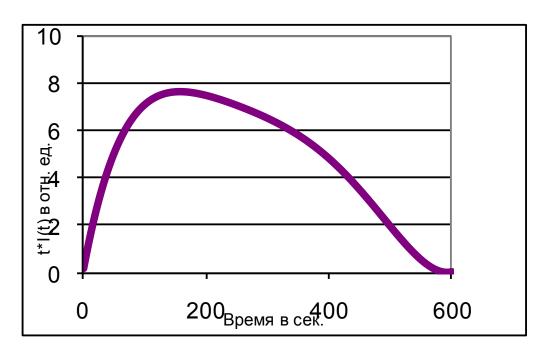
Многопараметрический подход позволяет разработать экспертную систему оценки состояния работоспособности.

Основные электрические параметры

Физические модели абсорбционных методов контроля изоляционных промежутков

Основные электрические параметры

Каждый из представленных параметров оценивает степень деформации зависимости тока абсорбции от времени и тем самым делаются попытки оценить состояние контролируемой изоляции.


Основным недостатком такого подхода является то, что степень деформации зависимости I(t) определяется только в отдельных ее точках (t = 15 сек, 30 сек, 60 сек, 600 сек) и игнорируется изменение на протяжении всего временного интервала, при этом теряется большая часть информации о состоянии контролируемой изоляции.

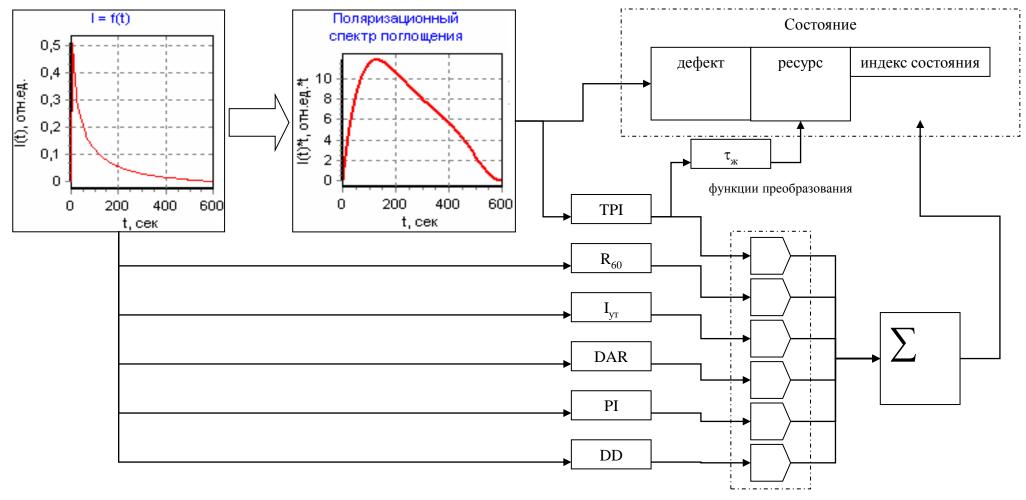
Изучение спектра поляризации

Зависимость I(t) преобразуют в зависимость вида $t \cdot I(t) = f(t)$, максимум которой (TPI = $\max[t \cdot I(t)]$) можно использовать как основной параметр контроля состояния изоляции.

ТРІ не зависит от геометрических параметров исследуемого

объекта и величины приложенного напряжения, а зависит от структуры и физического состояния исследуемого объекта.

Спектр токов поляризации


Изучение спектра поляризации

Спектр токов поляризации является структурно чувствительным, т.е. изменение неоднородности структуры диэлектрика приводит к существенному искажению формы и смещению положения максимума на временной оси.

Нормированные спектры токов поляризации, характеризующие различные структурные нарушения в объеме изоляционных промежутков

Идеология многопараметрической системы оценки состояния изоляции

Модуль многопараметрической системы оценки состояния изоляционной системы электрических машин, основанной на анализе абсорбционных процессов

Заключение

Всякое изменение структуры, химического состава, вызванное процессами старения или внешними воздействиями, заметно деформирует характер зависимости тока поляризации от времени.

Исследование абсорбционных характеристик изоляции с применением многообразия существующих методов контроля состояния позволяет оценивать не только качество выпускаемых электротехнических изделий, но и судить о ресурсе оборудования, его надежности.

Совместное использование имеющихся методов позволяет создавать многопараметрические системы контроля состояния оборудования.