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INTRODUCTION AND FORMULATION OF THE PROBLEM 

Dynamic loading has a significant effect on design life and efficiency of structures. In particular, for thin-walled 

shell structures used in aircraft construction, building construction, and other industrial fields, dynamic loading may lead 

to a loss of stability (significant sudden increase in deflection with a small change in the applied load). Frequently this 

leads to a sudden increase of stresses in the shell material and emergence of irreversible changes (appearance of 

microcracks and flow deformations).  

The purpose of this work is to analyze the stability of some variants of shell structures made of modern orthotropic 

materials under dynamic loading. 

THEORY AND METHODS 

We will use a geometrically nonlinear variant of the mathematical model which also takes into account the 

orthotropy of the material and transverse shears (model of the Timoshenko type). The middle surface of the shell is taken 

as the coordinate surface. The x  axis is directed along the generatrix of a cylindrical panel, the y  axis along the directrix, 

and the z  axis along the normal to the middle surface in the direction of the concavity (Fig. 1). 
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FIGURE 1. Schematic representation of a cylindrical panel 

NUMERICAL RESULTS 

We consider isotropic and orthotropic cylindrical panels that have fixed-pin joints 

along the contour. The transverse load acting on the structure is uniformly distributed and 

linearly dependent on time:   ,,, 1tAtyxqq   where 1A  is loading speed. 

Inflection of the “load-deflection” curve is the criterion for loss of stability of the shell 

under dynamic loading. 

We shall consider cylindrical shell panels with length ha 150 , turning angle 4.0b  

rad., radius hR 250  and thickness 01.0h  m, with loading speed sMPaA /11  . The 

direction of the orthotropy axis 2 coincides with the direction of the generatrix (the x  axis). 

Calculations were performed for .9N  

Panels made of orthotropic materials are examined: E-Glass/Epoxy [4], AS/3501 

Graphite/Epoxy [4], fiberglass T-10 / UPE22-27 [11], and carbon fiber-reinforced plastic 

(CFRP) M60J [12], as well as isotropic materials: steel and plexiglass. Material parameters 

and load values for loss of stability krq  are given in Table 1, and the corresponding “load-

deflection” curves in Figure 2. 
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FIGURE 2. The “load-deflection” relations for the considered variants of shells 

TABLE 1. Material parameters and load values for loss of stability krq  

Material MPa,1E  MPa,2E  MPa,12G  12  3kg/m,  MPa,krq  

Steel (isotropic) 5101.2   5101.2   510807.0   3.0  7800 0.7032 

Plexiglass (isotropic) 51003.0   51003.0   510012.0   35.0  1190 0.0284 

E-Glass/Epoxy  510607.0   510248.0   51012.0   23.0  1800 0.1889 

AS/3501 

Graphite/Epoxy 

51038.1   5100896.0   510071.0   3.0  1540 0.3721 

Fiberglass T-

10/UPE22-27 

510294.0   510178.0   5100301.0   123.0  1800 0.0926 

CFRP M60J 5103.3   510059.0   510039.0   32.0  1600 0.8194 

CONCLUSIONS 

Thus, the stability of some variants of cylindrical orthotropic panels made of modern 

orthotropic materials under dynamic loading was analyzed. 

Based on the performed calculations, it can be concluded that when using modern 

orthotropic materials (carbon fiber-reinforced plastic, fiberglass, etc.) reduction of critical 

load value is possible, but such structures are substantially lighter than structures made of 

traditional isotropic materials (steel). 

Taking into account geometric nonlinearity and transverse shears, the geometric relationships in the middle surface of a cylindrical panel will have the form: 
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where      tyxWWtyxVVtyxUU ,,,,,,,,   are unknown displacement functions, and  ,,, tyxxx    tyxyy ,,  are unknown functions of the normal rotation angles in the 

zx  and zy  planes respectively; yx  ,  are the strain deformations along the coordinates x , y  of the middle surface; yzxzxy  ,,  are the shear deformations in the zyzxyx  ,,  

planes respectively; )(zf  is a function characterizing the distribution of the shear deformations yzxz  ,  by the shell thickness; 1221 ,,   are functions of the change of curvature and 

torsion; R  is the radius; 6/5k ; and .
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where   is material density; h  is panel thickness; 21,EE  are elastic moduli; 231312 ,, GGG  are shear moduli; and 2112,  are Poisson’s ratios. The total deformation energy of a shell 

structure can be written with the functional   tdEKI

t

t

p 
1

0

,  (3),         where K  is the kinetic deformation energy of the system, and pE  is the functional of the static problem, equal to 

the difference in the potential deformation energy of the system and the work of external forces: 
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According to the classical variation of the L.V. Kantorovich method, the required displacement functions and functions of the normal rotation angles are presented in the form 
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where 
iyiU   are unknown functions of the variable t , and 51 ZZ   are known approximating functions that satisfy given boundary conditions. As a rule, these functions are different 

combinations of trigonometric functions with various arguments.  

Then functions (5) are substituted into the functional of the total deformation energy of the shell (4). After calculating the integrals over variables   and   from known functions, the 

functional I  becomes a one-dimensional functional of the functions    ttU
iyi  . Equations of motion, which are an ODE system, are obtained from the minimum conditions for this 

functional, 0I . Likewise, the system thus derived is called a multidimensional variant of the Euler–Lagrange equation: 
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Since the derivatives of the required function with respect to variable t  are contained only in the expression for the kinetic energy, and the functions themselves only in the expression 

for pE , then the following is true 
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Moreover, 
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 is a system of equations of a static problem [9]. The process of formulating system (7) was programmed in the analytical computing environment 

Maple 2016. The resulting system of ODE was solved numerically by the Rosenbrock method, which is effective in solving rigid systems. 
 


