

СТУКТУРНЫЕ ИЗМЕНЕНИЯ В БИНАРНОМ ЭКВИАТОМНОМ СПЛАВЕ $Ni_{50}Mn_{50}$ ПРИ ЕСТЕСТВЕННОМ СТАРЕНИИ

Белослудцева Е.С. 1,2 , Винокуров Д.Е. 1,2 , Царигородцева А.А. 2 1 Институт физики металлов УрО РАН, 18, ул. Софы Ковалевской, г. Екатеринбург, 620137, РФ, 2 Уральский федеральный университет, 19, ул. Мира, г. Екатеринбург, 620002, РФ $^*ebelosludceva@mail.ru$

В работе подробно исследована морфология мартенсита в сплаве $Ni_{50}Mn_{50}$ на разных масштабных уровнях. Анализ изображений микроструктуры и микроэлектронограмм показал, что иерархия однотипных структур соответствует нескольким размерным уровням: от сотен микрометров до величин в нескольких нанометров, соответствующих межплоскостным расстояниям. Мартенсит имеет преимущественную морфологию в виде иерархии пакетов тонких (отношение длины к толщине ~ 10.1) пластинчатых и внутрение двойникованных кристаллов с плоскими границами габитусов $\{111\}L10/\{101\}B2$. Системы двойникующего сдвига $L1_0$ -мартенсита $\{111\}<112$ $>\Gamma$ ЦТ (или $\{101\}<11$ 0>ОЦТ) близки к мягкой моде Зинеровского типа $\{101\}<101$ >B2, типичной для ОЦК-кристаллов [1, 2]. Такая хорошо организованная структура сплавов формируется за счет самосогласованного роста мартенситных кристаллов (определяемого наиболее выгодным направлением мартенситных сдвигов), т.е. так, чтобы суммарная макроскопическая деформация и упругие напряжения были минимальными. Это в свою очередь определяет формирование самоаккомодирующей пакетной иерархии субструктуры кристаллов мартенсита всех кристаллографически эквивалентных ориентаций с первичным микродвойникованием, вторичным нанодвойникованием и образованием дефектов упаковки.

В результате естественного старения (порядка 20 лет) впервые обнаружено [3], что произошло фазовое расслоение сплава $\mathrm{Ni}_{50}\mathrm{Mn}_{50}$ в результате перераспределения никеля и марганца. Образовавшиеся выделения характеризуются округлыми границами и разнозереннистостью (от 1 до 10 мкм). Объемная доля таких выделений \sim 20%. Установлено, что в этих областях содержание никеля больше на 2...3 ат. % от стехиометрического состава. Соответственно, в матрице образца наблюдается повышенное содержание марганца по сравнению с химическим составом, наблюдаемым до распада. При этом остальная часть сохраняет мартенситную структуру, что также подтверждается результатами рентгеноструктурного фазового анализа.

Методом EBSD-анализа установлено, что образовавшиеся области представляют смесь двух фаз — раздвойникованна фаза NiMn ($L1_0$) и Ni $_3$ Mn (кубическая решетка). При этом объемная доля кубической фазы составляет 30% от размера области или 2% от всей поверхности исследования.

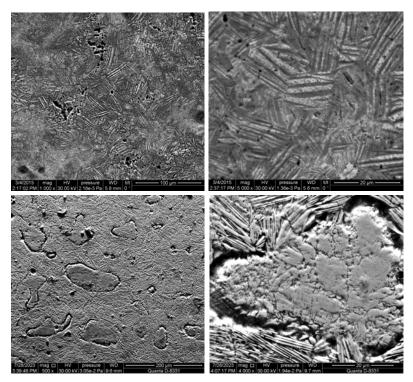


Рис. 3. СЭМ -изображение микроструктуры сплава $Ni_{50}Mn_{50}$ (а, δ – исходное, ϵ ,г – после естественного старения

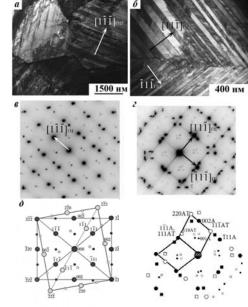


Рис. 1. Светлопольные изображения (а, б) микроструктуры сплава $Ni_{50}Mn_{50}$, микролектронограммы (в, г) и схемы их расшифровок

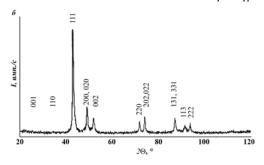
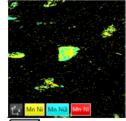



Рис. 2. Рентгеновская дифрактограмма сплава Ni_{50} М n_{50}

Таблица 1. Фазовый состав сплава $Ni_{50}Mn_{50}$ после естественного старения по результатавм EBSD-анализа

Фаза	Фазовый состав (%)	Параметры решетки, нм		
		a	b	c
MnNi (L1 ₀)	4	0,369	0,36 9	0,349
МпNi ₃ (кубическая решетка)	2	0,359	0,35 9	0,359
Нулевые решения	94			

Рис. 4. Распределение фаз в результате EBSD-анализа

Использовали оборудование отдела электронной микроскопии ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН

Рис. 5. Распределение основных элементов в сплаве Ni₅₀Mn₅₀ после естественного старения

Литература

Хачин, В.Н. Никелид титана: структура и свойства / В.Н. Хачин, В.Г. Пушин, В.В. Кондратьев. – М.: Наука, 1992. – 160 с.

Белослудцева Е.С. микроструктура, термоупругие мартенситные превращения и свойства В2 сплавов на основе Ni-Mn: дис. ... канд. физ. мат. наук: 01.04.07/ Е.С. Белослудцева- ИФМ УрО РАН, Екатеринбург, 2017 - 167 с.

Екатериноург, 2017—107 С. Е. С. Белослудцева, В.Г.Пушин, Н.Н. Куранова, Д.Е. Винокуров, А.О. Гусев. Сборник статей XXII Международной научно-технической Уральской школы-семинара металловедов — молодых ученых. 2023, 311—315.